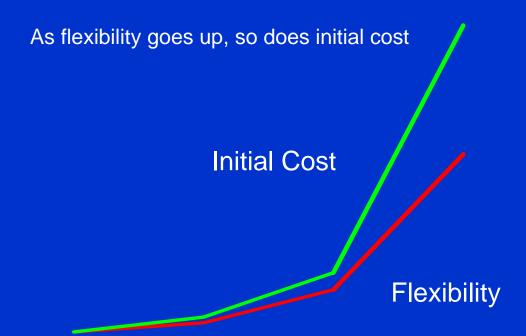
Los Alamos National Laboratory

Planning for the Unknown:


How do you build a 50-year laboratory when you can't see the science 10 years from now?

Karl Jonietz Pollution Prevention Office

Ken Stroh Manager, Fuel Cell Programs


The Fuel Cell National Resource Center

Two notional curves

Unfortunately, flexibility is rarely free:

The Problem -- Flexibility is good, but sometimes expensive

- Everyone agrees that good laboratory buildings need to be flexible...but not everyone can afford maximum flexibility
- The Federal Government is perhaps the worst offender
 - —Two colors of money
 - —"Value" engineering
 - —Rank stupidity
- We need Life-cycle Cost Police

Two tools to gather and sort data

Delphi Technique

- A forecasting methodology developed by RAND; later transformed into a group decision-making tool.
- Allows a group of experts to come to consensus with incomplete data and in areas with high subjective content.

Scenarios

- Tell a coherent story about a future state or condition.
- Provide a means of securing informed involvement throughout a research organization.
- Using scenarios is a particularly good to bring scientists and non-scientists together to build supportive teams.

Delphi Technique - Round One

- Involve the building's future occupants.
- Ask a series of open-ended change related questions.
- Do not clarify; let clarification come from the discussion.
- What role will experimentation play in the future?
- What changes are expected in environmental regulation?
- How will microscopy change over time?
- What other changes do you foresee in the way we will operate in the future?

Delphi Technique - Round Two

- Once Round One is complete, seek to have the group prioritize the importance of its findings.
- Which of these trends will matter most to us?
- Which changes should we begin to accommodate immediately?
- What changes involve risk? Which are sure bets?
- Work toward consensus around reasonable probabilities.

Delphi Technique - Round Three

- Once Round Two is complete, relate priorities to the building.
- What will these prioritized changes mean for our activities?
- What are the people and staffing implications of the identified process changes?
- What will they mean for our new building?
- Establish a consensus priority listing for accommodating process change.

Using scenarios for further definition

- Write up one or two scenarios based on Delphi results.
- Work to define a scenario reflecting the "ideal" case described by the building's future occupants.
- Use this as a metric to judge design changes.
- Does this change support or detract from our preferred outcome?
- Share the scenario widely.
- Revise as needed.

Relating the "ideal" to the "possible"

- Hoping for an unlimited budget might leave you waiting a long time.
- Use the Delphi results to examine each cost element separately.
- Consider the "set" implications of your decisions.
- Consider the whole building.
- Know what to do if the budget shrinks or grows.

- Be honest, and public.
- Tell the story to everyone who will listen.

Where do you draw the line?

- An Expected Value Function:
 - Flexibility Importance Score = ((Retrofit cost Initial Cost) * Likelihood of Need)
 - Examples: Mobile lab fixtures, spare HVAC components, roof photovoltaic systems
 - Half-way or Preparative Measures
 - Examples: Open HVAC space, fume hoods, non-load bearing walls.

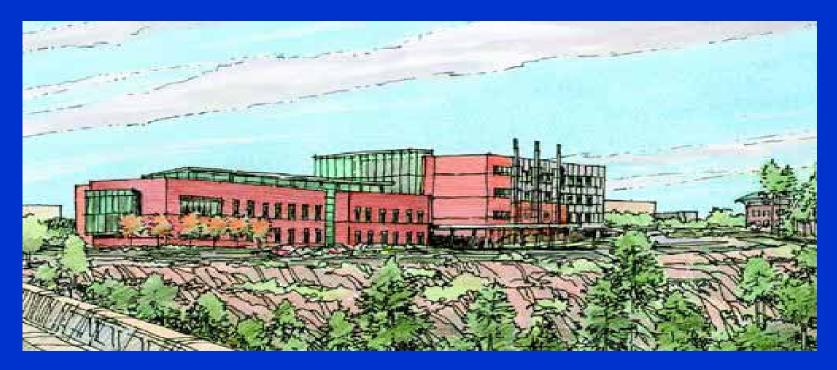
Keeping faith with the initial vision

- Recognize initial limitations.
- Syndicate the concept of trade-offs.
- Seek validation of costs and likelihoods.
- Publicize any decisions.
- Don't let the need for trade-offs, reduce support for the final outcome.

Problems

Heavy front-end process investment

- Participant cynicism and burn-out.
- No Government-provided templates.
- Long funding and construction lead times necessitate revision.


External Concerns

- Maximum square footage for minimum dollar.
- "You are not saving my money."
- Machismo.

Fuel Cell National Resource Center

Open for business in 2006

